Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRMO8

Rev 1.11

<BS(PHY)>

<11/02/2022>

CONTINUOUS INTERNAL EVALUATION - 2

Dept: BS(PHY)		Sub: Engineering Physics	S Code:21PHY12
16/02/2022	Time: 3-4:30 pm	Max Marks: 40	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	J. Sandara	Questions	Mark s	RBT	CO's				
PART A									
1	1	State the assumptions of Planck's law of Black body radiation and reduce Planck's law to Wien's law and Rayleigh Jeans law.	8	L1& L2	CO2				
1		State and explain de Broglie's hypothesis and prove that wavelength of an accelerated electron is $\lambda = \frac{1.226 nm}{\sqrt{V}}$	8	L1& L2	CO2				
	c	The inherent uncertainty in the measurement of time spent by a nuclei in the excited state is 1.4x 10 ⁻¹⁰ s. Calculate the uncertainty that results in its energy in the excited state.	4	L3	CO2				
OR									
2		State and explain Heisenberg's Uncertainty principle. Prove that electrons cannot exist inside the Nucleus of an atom.	8	L1& L2	CO2				
ŀ	2	Staring from Schrodinger's time independent wave equation, derive the expression for energy Eigen value and Eigen function for an electron present in 1-d potential well of infinite depth.	8	L18 L3	CO2				
c	F	An electron is bound in a one dimensional potential wel	1 4	L3	CO2				

Page: 1 / 2

		of width 1Å, but infinite wall height. Find its energy values in the ground state and in the first two excited states.			e				
PART B									
3		What is Laser. Give two examples of Laser. Explain the terms (a) spontaneous emission, (b) stimulated emission (c) induced absorption.	8	L1& L2	CO3				
		Mention the three different vibrational modes of CO ₂ molecule. With a neat energy level diagram explain the construction and working of CO ₂ laser.	8	L1& L2	CO3				
		The average output power of laser source emitting a laser beam of wavelength 632.8nm is 5mW. Find the number of photons emitted per second by the laser source.	4	L3	CO3				
		OR							
4	a	Explain requisites of a laser system. Define the terms Population inversion and meta-stable state (Conditions of Laser action).	8	L1& L2	CO3				
	t	Derive the expression for energy density of radiation at equilibrium in terms of Einstein's coefficients.	8	L3	CO3				
	C	The ratio of population of two energy levels is 1.059x10 ⁻³⁰ . Find the wavelength of light emitted by spontaneous emissions at 330K.	4	L3	CO3				

Prepared by: Prof. Sunil K C

HOD: Prof. Ramananda Kamath